Derivative-Based Trapezoid Rule for the Riemann-Stieltjes Integral
نویسندگان
چکیده
منابع مشابه
The Riemann-stieltjes Integral on Time Scales
We study the process of integration on time scales in the sense of Riemann-Stieltjes. Analogues of the classical properties are proved for a generic time scale, and examples are given.
متن کاملRiemann-Stieltjes type integral based on generated pseudo-operations
We shall consider generated pseudo-operations of the following form: x⊕ y = g(−1) (g(x) + g(y)) , x ̄ y = g(−1) (g(x)g(y)) , where g is a positive strictly monotone generating function and g(−1) is its pseudo-inverse. Using this type of pseudo-operations, the Riemann-Stieltjes type integral will be introduced and investigated.
متن کاملRelative Convexity and Quadrature Rules for the Riemann–stieltjes Integral
We develop Trapezoid, Midpoint, and Simpson’s rules for the Riemann-Stieltjes integral, the latter two being new. These rules are completely natural when the notion of relative convexity is used. Mathematics subject classification (2010): 65D30.
متن کاملApproximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications
In this paper we provide sharp bounds for the error in approximating the Riemann-Stieltjes integral R b a f (t) du (t) by the trapezoidal rule f (a) + f (b) 2 [u (b) u (a)] under various assumptions for the integrand f and the integrator u for which the above integral exists. Applications for continuous functions of selfadjoint operators in Hilbert spaces are provided as well. 1. Introduction I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/874651